Files
StreamLens/README.md
2025-07-26 00:02:25 -04:00

208 lines
11 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# StreamLens - Ethernet Traffic Analyzer
Advanced network traffic analyzer for pcap files and live streams with specialized protocol dissection for aviation and industrial networks. Features sigma-based outlier identification, real-time statistical analysis, and both TUI and modern GUI interfaces with interactive signal visualization.
## Quick Start
```bash
# Install dependencies
pip install scapy numpy matplotlib
# For GUI mode (optional but recommended):
pip install PySide6
# For macOS users - install tkinter support for TUI visualization:
brew install python-tk@3.13
# Launch modern GUI with interactive plots
python streamlens.py --gui --pcap file.pcap
# GUI mode only (then open file via File menu)
python streamlens.py --gui
# Analyze pcap file with TUI (flows sorted by largest sigma outliers)
python streamlens.py --pcap file.pcap
# Live capture with real-time statistics
python streamlens.py --live --interface eth0
# Console output with outlier reporting
python streamlens.py --pcap file.pcap --no-tui
# Generate comprehensive outlier report
python streamlens.py --pcap file.pcap --report
# Get pcap file information
python streamlens.py --pcap file.pcap --info
# Adjust outlier threshold (default: 3.0 sigma)
python streamlens.py --pcap file.pcap --outlier-threshold 2.0
# With BPF filter for live capture
python streamlens.py --live --filter "port 319 or port 320"
```
## Features
### 🖥️ Modern Dark-Themed GUI Interface with Optimized Layout
- **Professional Dark Theme**: Modern color palette with #1e1e1e backgrounds and optimized contrast
- **Content-Fitted Columns**: Headers automatically resize to fit content, not wider than necessary
- **Full-Width Utilization**: Grid view uses entire screen width with prioritized wide signal plots
- **Optimized Row Height**: 25% taller rows (30px) for better visual balance and plot visibility
- **Wide Embedded Plots**: 8x2.5 figure size with minimal horizontal margins for maximum signal detail
- **Intelligent Column Sizing**: Auto-resizes to content with smart minimums and plot column priority
- **Professional Qt Interface**: Cross-platform GUI built with PySide6 with native look and feel
- **Embedded Signal Plots**: Chapter 10 signal plots rendered directly in the flow table cells
- **Synchronous Plot Rendering**: Plots appear immediately when table loads, no background threads
- **Chapter 10 Flow Highlighting**: Flows with Chapter 10 data are highlighted in modern blue and bold
- **Smart Signal Caching**: Avoids repeated processing of the same flow's signal data
- **Flow Detail Panel**: Dockable bottom panel with dark theme styling
- **Background PCAP Loading**: Progress bar with non-blocking file processing
- **Outlier Threshold Control**: Real-time adjustment of sigma-based outlier detection
- **Threading Safety**: Main-thread plot creation eliminates Qt threading violations
- **No Floating Windows**: All plots stay embedded in the grid interface
### Enhanced TUI Interface
- **Three-Panel Layout**: Flows list (top-left), flow details (top-right), timing visualization (bottom)
- **Sigma-Based Flow Sorting**: Flows automatically sorted by largest outlier sigma deviation
- **Real-time Navigation**: Arrow keys to navigate between flows with instant detail updates
- **Protocol-aware Display**: Shows detected protocols in flow list and details
- **Smart Protocol Detection**: Prioritizes specialized protocols (Chapter 10, PTP, IENA) over generic ones
- **Detailed Outlier Analysis**: Individual rows showing frame numbers and exact time deltas for outlier packets
- **Visual Timeline**: ASCII timeline showing frame timing deviations with outlier highlighting
- **Live Statistics**: Real-time running averages and outlier detection during capture
### Core Analysis Engine
- **Flow-based Analysis**: Groups packets by source-destination IP pairs with timing statistics
- **Configurable Outlier Detection**: Adjustable sigma threshold (default: 3.0σ)
- **Multi-layer Protocol Analysis**: Ethernet, IP, UDP, TCP with specialized dissectors
- **Real-time Statistical Updates**: Running statistics for live capture mode
- **High Jitter Flow Identification**: Coefficient of variation analysis
### Specialized Protocol Dissectors
- **Chapter 10 (IRIG 106-17)**: Complete packet dissection including data types, timestamps, and payload analysis
- **PTP (IEEE 1588-2019)**: Precision Time Protocol message parsing with sync, delay, and announce messages
- **IENA (Airbus)**: Industrial Ethernet Network Architecture with P/D/N/M/Q message types
### 📊 Chapter 10 Signal Visualization with Dark Theme Integration
- **Wide Embedded GUI Plots**: Chapter 10 flows display matplotlib plots directly in flow table with 8x2.5 sizing
- **Dark Theme Plot Integration**: Plots use #1e1e1e backgrounds with white text and modern #0078d4 signal colors
- **Optimized Plot Margins**: Minimal horizontal margins (8% left, 98% right) for maximum signal visualization area
- **TUI Signal Plots**: Press `v` in the TUI to generate signal files (threading-safe)
- **Signal Consolidation**: Automatically combines multiple packets from the same channel into continuous signals
- **TMATS Integration**: Automatically extracts channel metadata from TMATS frames for proper signal scaling
- **Multi-channel Support**: Displays multiple channels with proper engineering units and scaling
- **Threading Safety**: GUI uses main-thread plot creation, TUI saves plots to files to avoid segfaults
- **No Floating Windows**: All GUI plots stay embedded in the table interface
- **Both Modes**: Works for both PCAP analysis and live capture
- **Enhanced Visual Quality**: 150px plot height with professional styling and grid overlays
### Protocol Detection & Fallbacks
- Automatic protocol identification based on port numbers and packet structure
- Fallback to common protocols: HTTP, HTTPS, SSH, DNS, DHCP, NTP, SNMP, IGMP, ICMP
- Multicast detection for aviation/industrial networks
- Enhanced error handling and validation
## Installation
```bash
# Clone or download the project
cd streamlens
# Install dependencies
pip install scapy numpy matplotlib PySide6
# Run the analyzer
python streamlens.py --help
```
## Key Features Highlights
### 🎯 Sigma-Based Flow Prioritization
Flows are automatically sorted by their largest outlier sigma deviation, putting the most problematic flows at the top of the list for immediate attention.
### 📊 Real-time Statistics
Live capture mode provides running averages and outlier detection as packets arrive, with TUI updates every 500ms.
### 🔍 Configurable Analysis
Adjust outlier detection sensitivity with `--outlier-threshold` (default: 3.0σ) to fine-tune analysis for your specific network conditions.
### 📈 Comprehensive Reporting
Generate detailed outlier reports with `--report` flag showing frame-by-frame sigma deviations and timing analysis.
## GUI Usage
### Main Interface
- **Menu Bar**: File operations (Open PCAP, Monitor NIC), View controls, Help system
- **Toolbar**: File operations and outlier threshold adjustment
- **Central Flow Table**: Full-width table with file info, flow data, and integrated signal plots
- **Flow Detail Panel**: Dockable bottom panel showing comprehensive flow information
- **Status Bar**: Loading progress and operation feedback
### Workflow
1. **Launch GUI with PCAP**: `python streamlens.py --gui --pcap file.pcap` (recommended)
2. **Alternative Launch**: `python streamlens.py --gui`, then File → Open PCAP...
3. **Immediate Analysis**: Flow table displays instantly with all flow data and wide embedded plots
4. **Optimized Display**: Content-fitted columns, 25% taller rows, and full-width utilization
5. **Wide Plot Visualization**: Chapter 10 flows show detailed signal plots with minimal margins
6. **Browse Flows**: View flows in the dark-themed table (Chapter 10 flows highlighted in modern blue)
7. **Analyze Details**: Select flows to view detailed information in the dark-themed bottom panel
8. **Adjust Threshold**: Use toolbar spinner to change outlier detection sensitivity
9. **Multi-Flow Comparison**: Compare signals across different flows in the same optimized view
## TUI Controls
- **↑↓**: Navigate between flows in main view
- **v**: Visualize Chapter 10 signals for selected flow (saves plot files)
- **t**: Toggle timeline panel on/off
- **d**: Switch to frame dissection view
- **m** or **ESC**: Return to main view
- **q**: Quit application
## Timeline Visualization
The bottom panel displays a visual timeline of the selected flow's timing behavior:
- **Horizontal axis**: Progression through packet sequence
- **Vertical axis**: Deviation from average inter-arrival time (centered on average)
- **Characters**: `·` = normal timing, `•`/`○` = moderate deviation, `█`/`▄` = outliers
- **Scale**: Automatically adjusts to show full range of deviations
- **Info bar**: Shows total frames, deviation range, and outlier count
## Project Structure
```
streamlens/
├── streamlens.py # Main entry point
├── analyzer/ # Core analysis package
│ ├── main.py # CLI argument handling and main logic
│ ├── analysis/ # Analysis engine
│ │ ├── core.py # Main analyzer class
│ │ ├── flow_manager.py # Flow tracking and management
│ │ └── statistics.py # Statistical analysis and outlier detection
│ ├── models/ # Data structures
│ │ ├── flow_stats.py # Flow and frame type statistics
│ │ └── analysis_results.py # Analysis result containers
│ ├── protocols/ # Protocol dissectors
│ │ ├── base.py # Base dissector interface
│ │ ├── chapter10.py # IRIG106 telemetry protocol
│ │ ├── ptp.py # IEEE 1588 Precision Time Protocol
│ │ ├── iena.py # Airbus IENA protocol
│ │ └── standard.py # Standard protocol detection
│ ├── gui/ # Modern GUI Interface with Docking Panels
│ │ ├── __init__.py # GUI package initialization
│ │ ├── main_window.py # PySide6 main window with docking system
│ │ └── dock_panels.py # Dockable panel implementations (flow list, plots, details)
│ ├── tui/ # Text User Interface
│ │ ├── interface.py # Main TUI controller
│ │ ├── navigation.py # Navigation handling
│ │ └── panels/ # UI panel components
│ │ ├── flow_list.py # Flow list panel
│ │ ├── detail_panel.py # Flow details panel
│ │ └── timeline.py # Timeline visualization panel
│ └── utils/ # Utility modules
│ ├── pcap_loader.py # PCAP file handling
│ ├── live_capture.py # Live network capture
│ └── signal_visualizer.py # Chapter 10 signal visualization (thread-safe)
└── *.pcapng # Sample capture files
```