re-focus on TUI and core

This commit is contained in:
2025-07-26 16:51:37 -04:00
parent 272d23c6be
commit 0f2fc8f92c
5 changed files with 359 additions and 21 deletions

View File

@@ -40,6 +40,9 @@ class FlowManager:
timestamp = float(packet.time)
packet_size = len(packet)
# Extract transport layer information
transport_info = self._extract_transport_info(packet)
# Determine basic protocol
protocols = self._detect_basic_protocols(packet)
@@ -51,6 +54,10 @@ class FlowManager:
self.flows[flow_key] = FlowStats(
src_ip=src_ip,
dst_ip=dst_ip,
src_port=transport_info['src_port'],
dst_port=transport_info['dst_port'],
transport_protocol=transport_info['protocol'],
traffic_classification=self._classify_traffic(dst_ip),
frame_count=0,
timestamps=[],
frame_numbers=[],
@@ -314,6 +321,64 @@ class FlowManager:
inter_arrival = timestamp - ft_stats.timestamps[-2]
ft_stats.inter_arrival_times.append(inter_arrival)
def _extract_transport_info(self, packet: Packet) -> Dict[str, any]:
"""Extract transport protocol and port information from packet"""
transport_info = {
'protocol': 'Unknown',
'src_port': 0,
'dst_port': 0
}
if packet.haslayer(UDP):
udp_layer = packet[UDP]
transport_info['protocol'] = 'UDP'
transport_info['src_port'] = udp_layer.sport
transport_info['dst_port'] = udp_layer.dport
elif packet.haslayer(TCP):
tcp_layer = packet[TCP]
transport_info['protocol'] = 'TCP'
transport_info['src_port'] = tcp_layer.sport
transport_info['dst_port'] = tcp_layer.dport
elif packet.haslayer(IP):
ip_layer = packet[IP]
if ip_layer.proto == 1:
transport_info['protocol'] = 'ICMP'
elif ip_layer.proto == 2:
transport_info['protocol'] = 'IGMP'
elif ip_layer.proto == 6:
transport_info['protocol'] = 'TCP'
elif ip_layer.proto == 17:
transport_info['protocol'] = 'UDP'
else:
transport_info['protocol'] = f'IP-{ip_layer.proto}'
return transport_info
def _classify_traffic(self, dst_ip: str) -> str:
"""Classify traffic as Unicast, Multicast, or Broadcast based on destination IP"""
try:
# Check for broadcast address
if dst_ip == '255.255.255.255':
return 'Broadcast'
# Check for multicast ranges
if dst_ip.startswith('224.') or dst_ip.startswith('239.'):
return 'Multicast'
# Check for other multicast ranges (224.0.0.0 to 239.255.255.255)
ip_parts = dst_ip.split('.')
if len(ip_parts) == 4:
first_octet = int(ip_parts[0])
if 224 <= first_octet <= 239:
return 'Multicast'
# Everything else is unicast
return 'Unicast'
except (ValueError, IndexError):
# If IP parsing fails, default to unknown
return 'Unknown'
def get_flows_summary(self) -> Dict:
"""Get summary of all flows"""
unique_ips = set()

View File

@@ -26,15 +26,19 @@ class FlowStats:
"""Statistics for a source-destination IP pair"""
src_ip: str
dst_ip: str
frame_count: int
timestamps: List[float]
frame_numbers: List[int]
inter_arrival_times: List[float]
avg_inter_arrival: float
std_inter_arrival: float
outlier_frames: List[int]
outlier_details: List[Tuple[int, float]] # (frame_number, time_delta)
total_bytes: int
protocols: Set[str]
detected_protocol_types: Set[str] # Enhanced protocol detection (CH10, PTP, IENA, etc)
src_port: int = 0 # Source port (0 if not applicable/unknown)
dst_port: int = 0 # Destination port (0 if not applicable/unknown)
transport_protocol: str = "Unknown" # TCP, UDP, ICMP, IGMP, etc.
traffic_classification: str = "Unknown" # Unicast, Multicast, Broadcast
frame_count: int = 0
timestamps: List[float] = field(default_factory=list)
frame_numbers: List[int] = field(default_factory=list)
inter_arrival_times: List[float] = field(default_factory=list)
avg_inter_arrival: float = 0.0
std_inter_arrival: float = 0.0
outlier_frames: List[int] = field(default_factory=list)
outlier_details: List[Tuple[int, float]] = field(default_factory=list) # (frame_number, time_delta)
total_bytes: int = 0
protocols: Set[str] = field(default_factory=set)
detected_protocol_types: Set[str] = field(default_factory=set) # Enhanced protocol detection (CH10, PTP, IENA, etc)
frame_types: Dict[str, FrameTypeStats] = field(default_factory=dict) # Per-frame-type statistics

View File

@@ -71,7 +71,7 @@ class TUIInterface:
# Calculate panel dimensions based on timeline visibility
if self.navigation.show_timeline:
# Top section: 70% of height, split into left 60% / right 40%
# Top section: 70% of height, split into left 70% / right 30%
# Bottom section: 30% of height, full width
top_height = int(height * 0.7)
bottom_height = height - top_height - 2 # -2 for separators and status bar
@@ -80,7 +80,7 @@ class TUIInterface:
top_height = height - 2 # -2 for status bar
bottom_height = 0
left_width = int(width * 0.6)
left_width = int(width * 0.7) # Increased from 60% to 70% for better IP:port display
right_width = width - left_width - 1 # -1 for separator
# Draw title

View File

@@ -19,9 +19,9 @@ class FlowListPanel:
flows_list: List[FlowStats], selected_flow: int):
"""Draw the flow list panel"""
# Draw flows table header
# Draw flows table header with adjusted column widths for better alignment
stdscr.addstr(y_offset, x_offset, "FLOWS:", curses.A_BOLD)
headers = f"{'Source IP':15} {'Dest IP':15} {'Pkts':5} {'Protocol':18} {'ΔT Avg':10} {'Out':4}"
headers = f"{'Src:Port':22} {'Dst:Port':22} {'Proto':6} {'Cast':5} {'#Frames':>7} {'Bytes':>7} {'Encoding':12} {'ΔT Avg':>9}"
stdscr.addstr(y_offset + 1, x_offset, headers[:width-1], curses.A_UNDERLINE)
# Calculate scrolling parameters
@@ -40,11 +40,23 @@ class FlowListPanel:
for flow_idx, flow in enumerate(flows_list):
# Check if main flow line should be displayed
if display_item >= scroll_offset and visible_items < max_rows:
# Draw main flow line
protocol_str = self._get_protocol_display(flow)
# Draw main flow line with new column layout
src_endpoint = f"{flow.src_ip}:{flow.src_port}" if flow.src_port > 0 else flow.src_ip
dst_endpoint = f"{flow.dst_ip}:{flow.dst_port}" if flow.dst_port > 0 else flow.dst_ip
# Format bytes with K/M suffix
bytes_str = self._format_bytes(flow.total_bytes)
# Get encoding information (primary detected protocol)
encoding_str = self._get_encoding_display(flow)
# Format average time
avg_time = f"{flow.avg_inter_arrival:.3f}s" if flow.avg_inter_arrival > 0 else "N/A"
line = f"{flow.src_ip:15} {flow.dst_ip:15} {flow.frame_count:5} {protocol_str:18} {avg_time:10} {'':4}"
# Abbreviate traffic classification
cast_abbrev = flow.traffic_classification[:4] if flow.traffic_classification != "Unknown" else "Unk"
line = f"{src_endpoint:22} {dst_endpoint:22} {flow.transport_protocol:6} {cast_abbrev:5} {flow.frame_count:>7} {bytes_str:>7} {encoding_str:12} {avg_time:>9}"
if display_item == selected_flow:
stdscr.addstr(current_row, x_offset, line[:width-1], curses.A_REVERSE)
@@ -66,8 +78,9 @@ class FlowListPanel:
ft_avg = f"{ft_stats.avg_inter_arrival:.3f}s" if ft_stats.avg_inter_arrival > 0 else "N/A"
outlier_count = len(ft_stats.outlier_details) if ft_stats.outlier_details else 0
# Create frame type line aligned with columns
ft_line = f"{'':15} {'':15} {ft_stats.count:5} {frame_type:18} {ft_avg:10} {outlier_count:4}"
# Create frame type line aligned with new column layout
bytes_str_ft = self._format_bytes(ft_stats.total_bytes)
ft_line = f" └─{frame_type:18} {'':22} {'':6} {'':5} {ft_stats.count:>7} {bytes_str_ft:>7} {'':12} {ft_avg:>9}"
if display_item == selected_flow:
stdscr.addstr(current_row, x_offset, ft_line[:width-1], curses.A_REVERSE)
@@ -124,4 +137,46 @@ class FlowListPanel:
def get_total_display_items(self, flows_list: List[FlowStats]) -> int:
"""Public method to get total display items"""
return self._get_total_display_items(flows_list)
return self._get_total_display_items(flows_list)
def _format_bytes(self, bytes_count: int) -> str:
"""Format byte count with K/M/G suffixes, always include magnitude indicator"""
if bytes_count >= 1_000_000_000:
return f"{bytes_count / 1_000_000_000:.1f}G"
elif bytes_count >= 1_000_000:
return f"{bytes_count / 1_000_000:.1f}M"
elif bytes_count >= 1_000:
return f"{bytes_count / 1_000:.1f}K"
else:
return f"{bytes_count}B" # Add "B" for plain bytes
def _get_encoding_display(self, flow: FlowStats) -> str:
"""Get the primary encoding/application protocol for display"""
# Prioritize specialized protocols (Chapter 10, PTP, IENA)
if flow.detected_protocol_types:
specialized = {'CH10', 'PTP', 'IENA', 'Chapter10', 'TMATS'}
found_specialized = flow.detected_protocol_types.intersection(specialized)
if found_specialized:
return list(found_specialized)[0]
# Use first detected protocol type
return list(flow.detected_protocol_types)[0]
# Fallback to frame types if available
if flow.frame_types:
frame_types = list(flow.frame_types.keys())
# Look for interesting frame types first
priority_types = ['TMATS', 'CH10-Data', 'PTP-Sync', 'IENA-P', 'IENA-D']
for ptype in priority_types:
if ptype in frame_types:
return ptype
return frame_types[0]
# Last resort - check basic protocols
if flow.protocols:
app_protocols = {'DNS', 'HTTP', 'HTTPS', 'NTP', 'DHCP'}
found_app = flow.protocols.intersection(app_protocols)
if found_app:
return list(found_app)[0]
return "Unknown"

214
architecture_redesign.md Normal file
View File

@@ -0,0 +1,214 @@
# StreamLens Architecture Redesign
## Core Data Model Hierarchy
### 1. Flow Level
```python
@dataclass
class Flow:
src_ip: str
dst_ip: str
src_port: Optional[int] = None
dst_port: Optional[int] = None
transport_protocols: Dict[str, TransportProtocol] = field(default_factory=dict)
traffic_type: str = "Unknown" # Unicast/Multicast/Broadcast
first_seen: float = 0.0
last_seen: float = 0.0
total_packets: int = 0
total_bytes: int = 0
```
### 2. Transport Protocol Level
```python
@dataclass
class TransportProtocol:
protocol_name: str # TCP, UDP, ICMP, IGMP
port_info: Dict[str, int] # src_port, dst_port
application_encodings: Dict[str, ApplicationEncoding] = field(default_factory=dict)
packet_count: int = 0
byte_count: int = 0
timing_stats: TimingStatistics = field(default_factory=TimingStatistics)
```
### 3. Application Encoding Level
```python
@dataclass
class ApplicationEncoding:
encoding_name: str # PTP, IENA, Chapter10, RTP, etc.
packet_types: Dict[str, PacketTypeStats] = field(default_factory=dict)
decoder_metadata: Dict[str, Any] = field(default_factory=dict)
packet_count: int = 0
byte_count: int = 0
timing_stats: TimingStatistics = field(default_factory=TimingStatistics)
confidence_score: float = 1.0 # How sure we are about this encoding
```
### 4. Packet Type Level
```python
@dataclass
class PacketTypeStats:
type_name: str # Sync, Follow_Up, Delay_Req, TMATS, PCM_Data, etc.
packet_count: int = 0
byte_count: int = 0
timing_stats: TimingStatistics = field(default_factory=TimingStatistics)
payload_characteristics: Dict[str, Any] = field(default_factory=dict)
```
## Modular Decoder Framework
### Base Decoder Interface
```python
class StreamDecoder(ABC):
@property
@abstractmethod
def encoding_name(self) -> str:
pass
@property
@abstractmethod
def detection_ports(self) -> List[int]:
pass
@abstractmethod
def can_decode(self, packet: Packet, transport_info: Dict) -> float:
"""Return confidence score 0.0-1.0 that this decoder can handle the packet"""
pass
@abstractmethod
def decode_packet(self, packet: Packet) -> DecodingResult:
"""Decode packet and return structured result"""
pass
@abstractmethod
def get_packet_type(self, decoded_data: Dict) -> str:
"""Return specific packet type within this encoding"""
pass
```
### Decoder Registry
```python
class DecoderRegistry:
def __init__(self):
self.decoders = []
self._register_default_decoders()
def register_decoder(self, decoder: StreamDecoder):
self.decoders.append(decoder)
def find_decoders(self, packet: Packet, transport_info: Dict) -> List[Tuple[StreamDecoder, float]]:
"""Return list of (decoder, confidence) tuples sorted by confidence"""
candidates = []
for decoder in self.decoders:
confidence = decoder.can_decode(packet, transport_info)
if confidence > 0.0:
candidates.append((decoder, confidence))
return sorted(candidates, key=lambda x: x[1], reverse=True)
```
## Enhanced TUI Layout
### Main Flow Table
```
┌─ FLOWS ────────────────────────────────────────────────────────────────┐
│ Src:Port │ Dst:Port │ Proto │ Cast │ #Frames │ Bytes │ ΔT │
├─────────────────┼─────────────────┼───────┼──────┼─────────┼───────┼─────┤
│ 192.168.1.10:0 │ 239.255.0.1:319 │ UDP │ Multi│ 1,234 │ 1.2M │ 1ms │
│ ├─ PTP (v2) │ │ │ │ 856 │ 856K │ 1ms │
│ │ ├─ Sync │ │ │ │ 428 │ 428K │ 2ms │
│ │ └─ Follow_Up │ │ │ │ 428 │ 428K │ 2ms │
│ └─ IENA │ │ │ │ 378 │ 378K │ 3ms │
│ ├─ P-type │ │ │ │ 200 │ 200K │ 5ms │
│ └─ D-type │ │ │ │ 178 │ 178K │ 5ms │
└─────────────────┴─────────────────┴───────┴──────┴─────────┴───────┴─────┘
```
### Navigation
- **↑↓**: Navigate flows and subflows
- **→**: Expand flow to show encodings
- **←**: Collapse flow
- **Space**: Toggle detailed packet type view
- **Enter**: View detailed statistics and timing analysis
## Web GUI Streaming Architecture
### Real-Time Data Pipeline
```python
class StreamLensWebAPI:
def __init__(self):
self.websocket_clients = set()
self.data_aggregator = DataAggregator()
async def stream_flow_updates(self):
"""Stream real-time flow statistics to connected clients"""
while True:
updates = self.data_aggregator.get_recent_updates()
if updates and self.websocket_clients:
await self.broadcast_updates(updates)
await asyncio.sleep(0.1) # 10Hz update rate
async def broadcast_updates(self, updates: Dict):
"""Send updates to all connected WebSocket clients"""
message = json.dumps({
'timestamp': time.time(),
'flows': updates,
'type': 'flow_update'
})
disconnected = set()
for websocket in self.websocket_clients:
try:
await websocket.send(message)
except websockets.exceptions.ConnectionClosed:
disconnected.add(websocket)
self.websocket_clients -= disconnected
```
### Web Frontend Data Structure
```javascript
class StreamLensClient {
constructor() {
this.flows = new Map();
this.websocket = null;
this.charts = new Map();
}
connect() {
this.websocket = new WebSocket('ws://localhost:8080/stream');
this.websocket.onmessage = (event) => {
const data = JSON.parse(event.data);
this.handleFlowUpdate(data);
};
}
handleFlowUpdate(data) {
for (const [flowKey, flowData] of Object.entries(data.flows)) {
this.updateFlowDisplay(flowKey, flowData);
this.updateTimingCharts(flowKey, flowData.timing_stats);
}
}
}
```
## Implementation Phases
### Phase 1: Core Redesign
1. **New Data Models**: Implement hierarchical flow structure
2. **Decoder Framework**: Create modular decoder registry
3. **Enhanced Analysis**: Multi-level statistics and timing analysis
### Phase 2: Expanded Decoders
1. **RTP/RTCP Decoder**: Media streaming detection
2. **Industrial Protocol Decoders**: EtherCAT, PROFINET, Modbus TCP
3. **Broadcast Decoders**: SMPTE, AES67, NDI
### Phase 3: Enhanced TUI
1. **Hierarchical Display**: Expandable tree view of flows
2. **Real-time Updates**: Live statistics during capture
3. **Advanced Filtering**: Protocol, encoding, and statistical filters
### Phase 4: Web API & GUI
1. **WebSocket API**: Real-time data streaming
2. **React Frontend**: Interactive web interface
3. **Live Charts**: Real-time timing and throughput visualization
4. **Remote Monitoring**: Multiple StreamLens instances aggregation
This architecture provides a solid foundation for your enhanced vision while maintaining modularity and extensibility.