""" Statistical Analysis View - Timing analysis, outliers, and quality metrics Focuses on understanding network performance and data quality """ import curses import statistics from typing import TYPE_CHECKING, List, Optional, Dict, Tuple from ...models import FlowStats if TYPE_CHECKING: from ...analysis.core import EthernetAnalyzer class StatisticalAnalysisView: """ Statistical Analysis View - F3 Performance and quality analysis interface: - Timing statistics and outlier detection - Quality metrics and trends - Performance indicators - Network health assessment """ def __init__(self, analyzer: 'EthernetAnalyzer'): self.analyzer = analyzer self.selected_flow = 0 self.analysis_mode = 0 # 0=overview, 1=outliers, 2=quality, 3=timing self.scroll_offset = 0 def draw(self, stdscr, selected_flow_key: Optional[str]): """Draw the Statistical Analysis view""" height, width = stdscr.getmaxyx() start_y = 3 max_height = height - 2 flows_list = self._get_flows_list() if not flows_list: stdscr.addstr(start_y + 2, 4, "No flows available for statistical analysis", curses.A_DIM) return # Statistical analysis header mode_names = ["Overview", "Outlier Analysis", "Quality Metrics", "Timing Analysis"] current_mode = mode_names[self.analysis_mode] stdscr.addstr(start_y, 4, f"STATISTICAL ANALYSIS - {current_mode}", curses.A_BOLD) # Mode selector mode_line = start_y + 1 for i, mode_name in enumerate(mode_names): x_pos = 4 + i * 20 if i == self.analysis_mode: stdscr.addstr(mode_line, x_pos, f"[{mode_name}]", curses.A_REVERSE) else: stdscr.addstr(mode_line, x_pos, f" {mode_name} ", curses.A_DIM) # Analysis content area content_y = start_y + 3 content_height = max_height - content_y if self.analysis_mode == 0: self._draw_overview(stdscr, content_y, width, content_height, flows_list) elif self.analysis_mode == 1: self._draw_outlier_analysis(stdscr, content_y, width, content_height, flows_list) elif self.analysis_mode == 2: self._draw_quality_metrics(stdscr, content_y, width, content_height, flows_list) elif self.analysis_mode == 3: self._draw_timing_analysis(stdscr, content_y, width, content_height, flows_list) def _draw_overview(self, stdscr, start_y: int, width: int, height: int, flows_list: List[FlowStats]): """Draw statistical overview""" current_y = start_y # Overall statistics total_packets = sum(flow.frame_count for flow in flows_list) total_outliers = sum(len(flow.outlier_frames) for flow in flows_list) outlier_percentage = (total_outliers / total_packets * 100) if total_packets > 0 else 0 stdscr.addstr(current_y, 4, "NETWORK PERFORMANCE SUMMARY", curses.A_UNDERLINE) current_y += 2 # Key metrics metrics = [ ("Total Flows", str(len(flows_list))), ("Total Packets", f"{total_packets:,}"), ("Total Outliers", f"{total_outliers:,} ({outlier_percentage:.2f}%)"), ("Enhanced Flows", str(sum(1 for f in flows_list if f.enhanced_analysis.decoder_type != "Standard"))), ] for metric_name, metric_value in metrics: stdscr.addstr(current_y, 4, f"{metric_name:20}: {metric_value}") current_y += 1 current_y += 1 # Flow performance table stdscr.addstr(current_y, 4, "FLOW PERFORMANCE RANKING", curses.A_UNDERLINE) current_y += 2 # Table header header = f"{'Rank':>4} {'Flow':30} {'Packets':>8} {'Outliers':>9} {'Avg Δt':>10} {'Jitter':>8} {'Score':>6}" stdscr.addstr(current_y, 4, header, curses.A_BOLD) current_y += 1 # Rank flows by performance ranked_flows = self._rank_flows_by_performance(flows_list) visible_flows = min(height - (current_y - start_y) - 2, len(ranked_flows)) for i in range(visible_flows): flow, score = ranked_flows[i] is_selected = (i == self.selected_flow) attr = curses.A_REVERSE if is_selected else curses.A_NORMAL # Format flow line flow_desc = f"{flow.src_ip}:{flow.src_port} → {flow.dst_ip}:{flow.dst_port}" if len(flow_desc) > 28: flow_desc = f"{flow.src_ip[:8]}…:{flow.src_port} → {flow.dst_ip[:8]}…:{flow.dst_port}" outliers = len(flow.outlier_frames) outlier_pct = f"{outliers/flow.frame_count*100:.1f}%" if flow.frame_count > 0 else "0%" avg_timing = f"{flow.avg_inter_arrival*1000:.1f}ms" if flow.avg_inter_arrival > 0 else "N/A" jitter = f"{flow.std_inter_arrival*1000:.1f}ms" if flow.std_inter_arrival > 0 else "N/A" line = f"{i+1:>4} {flow_desc:30} {flow.frame_count:>8} {outlier_pct:>9} {avg_timing:>10} {jitter:>8} {score:>6.1f}" stdscr.addstr(current_y + i, 4, line[:width-8], attr) def _draw_outlier_analysis(self, stdscr, start_y: int, width: int, height: int, flows_list: List[FlowStats]): """Draw detailed outlier analysis""" current_y = start_y stdscr.addstr(current_y, 4, "OUTLIER ANALYSIS", curses.A_UNDERLINE) current_y += 2 # Find flows with outliers outlier_flows = [(flow, len(flow.outlier_frames)) for flow in flows_list if flow.outlier_frames] outlier_flows.sort(key=lambda x: x[1], reverse=True) if not outlier_flows: stdscr.addstr(current_y, 4, "No outliers detected in any flows", curses.A_DIM) stdscr.addstr(current_y + 1, 4, "All packet timing appears normal", curses.A_DIM) return # Outlier summary total_outliers = sum(count for _, count in outlier_flows) stdscr.addstr(current_y, 4, f"Flows with outliers: {len(outlier_flows)}") current_y += 1 stdscr.addstr(current_y, 4, f"Total outlier packets: {total_outliers}") current_y += 2 # Detailed outlier breakdown stdscr.addstr(current_y, 4, "OUTLIER DETAILS", curses.A_BOLD) current_y += 1 header = f"{'Flow':35} {'Outliers':>9} {'Rate':>8} {'Max Σ':>8} {'Timing':>12}" stdscr.addstr(current_y, 4, header, curses.A_UNDERLINE) current_y += 1 visible_flows = min(height - (current_y - start_y) - 2, len(outlier_flows)) for i in range(visible_flows): flow, outlier_count = outlier_flows[i] is_selected = (i == self.selected_flow) attr = curses.A_REVERSE if is_selected else curses.A_NORMAL flow_desc = f"{flow.src_ip}:{flow.src_port} → {flow.dst_ip}:{flow.dst_port}" if len(flow_desc) > 33: flow_desc = f"{flow.src_ip[:10]}…:{flow.src_port} → {flow.dst_ip[:10]}…:{flow.dst_port}" outlier_rate = f"{outlier_count/flow.frame_count*100:.1f}%" if flow.frame_count > 0 else "0%" max_sigma = self.analyzer.statistics_engine.get_max_sigma_deviation(flow) timing_info = f"{flow.avg_inter_arrival*1000:.1f}±{flow.std_inter_arrival*1000:.1f}ms" line = f"{flow_desc:35} {outlier_count:>9} {outlier_rate:>8} {max_sigma:>7.1f}σ {timing_info:>12}" stdscr.addstr(current_y + i, 4, line[:width-8], attr) # Selected flow outlier details if outlier_flows and self.selected_flow < len(outlier_flows): selected_flow, _ = outlier_flows[self.selected_flow] self._draw_selected_flow_outliers(stdscr, current_y + visible_flows + 1, width, height - (current_y + visible_flows + 1 - start_y), selected_flow) def _draw_quality_metrics(self, stdscr, start_y: int, width: int, height: int, flows_list: List[FlowStats]): """Draw quality metrics analysis""" current_y = start_y stdscr.addstr(current_y, 4, "QUALITY METRICS", curses.A_UNDERLINE) current_y += 2 # Enhanced flows quality enhanced_flows = [f for f in flows_list if f.enhanced_analysis.decoder_type != "Standard"] if enhanced_flows: stdscr.addstr(current_y, 4, "ENHANCED DECODER QUALITY", curses.A_BOLD) current_y += 1 header = f"{'Flow':30} {'Decoder':15} {'Quality':>8} {'Drift':>10} {'Errors':>8}" stdscr.addstr(current_y, 4, header, curses.A_UNDERLINE) current_y += 1 for i, flow in enumerate(enhanced_flows[:height - (current_y - start_y) - 5]): is_selected = (i == self.selected_flow) attr = curses.A_REVERSE if is_selected else curses.A_NORMAL flow_desc = f"{flow.src_ip}:{flow.src_port} → {flow.dst_ip}:{flow.dst_port}" if len(flow_desc) > 28: flow_desc = f"{flow.src_ip[:8]}…:{flow.src_port} → {flow.dst_ip[:8]}…:{flow.dst_port}" enhanced = flow.enhanced_analysis decoder_type = enhanced.decoder_type.replace("_Enhanced", "") quality = f"{enhanced.avg_frame_quality:.1f}%" if enhanced.avg_frame_quality > 0 else "N/A" drift = f"{enhanced.avg_clock_drift_ppm:.1f}ppm" if enhanced.avg_clock_drift_ppm != 0 else "N/A" error_count = (enhanced.rtc_sync_errors + enhanced.format_errors + enhanced.overflow_errors + enhanced.sequence_gaps) line = f"{flow_desc:30} {decoder_type:15} {quality:>8} {drift:>10} {error_count:>8}" stdscr.addstr(current_y + i, 4, line[:width-8], attr) current_y += len(enhanced_flows) + 2 # General quality indicators stdscr.addstr(current_y, 4, "GENERAL QUALITY INDICATORS", curses.A_BOLD) current_y += 1 # Calculate network health metrics health_metrics = self._calculate_health_metrics(flows_list) for metric_name, metric_value, status in health_metrics: status_color = curses.A_BOLD if status == "GOOD" else curses.A_DIM if status == "WARNING" else curses.A_REVERSE stdscr.addstr(current_y, 4, f"{metric_name:25}: {metric_value:15} [{status}]", status_color) current_y += 1 def _draw_timing_analysis(self, stdscr, start_y: int, width: int, height: int, flows_list: List[FlowStats]): """Draw detailed timing analysis""" current_y = start_y stdscr.addstr(current_y, 4, "TIMING ANALYSIS", curses.A_UNDERLINE) current_y += 2 # Timing distribution summary all_inter_arrivals = [] for flow in flows_list: all_inter_arrivals.extend(flow.inter_arrival_times) if all_inter_arrivals: mean_timing = statistics.mean(all_inter_arrivals) median_timing = statistics.median(all_inter_arrivals) std_timing = statistics.stdev(all_inter_arrivals) if len(all_inter_arrivals) > 1 else 0 stdscr.addstr(current_y, 4, "NETWORK TIMING DISTRIBUTION", curses.A_BOLD) current_y += 1 timing_stats = [ ("Mean Inter-arrival", f"{mean_timing*1000:.3f} ms"), ("Median Inter-arrival", f"{median_timing*1000:.3f} ms"), ("Standard Deviation", f"{std_timing*1000:.3f} ms"), ("Coefficient of Variation", f"{std_timing/mean_timing:.3f}" if mean_timing > 0 else "N/A"), ] for stat_name, stat_value in timing_stats: stdscr.addstr(current_y, 4, f"{stat_name:25}: {stat_value}") current_y += 1 current_y += 1 # Per-flow timing details stdscr.addstr(current_y, 4, "PER-FLOW TIMING ANALYSIS", curses.A_BOLD) current_y += 1 header = f"{'Flow':30} {'Mean':>10} {'Std Dev':>10} {'CV':>8} {'Range':>12}" stdscr.addstr(current_y, 4, header, curses.A_UNDERLINE) current_y += 1 # Sort flows by timing variability timing_flows = [(flow, flow.std_inter_arrival / flow.avg_inter_arrival if flow.avg_inter_arrival > 0 else 0) for flow in flows_list if flow.inter_arrival_times] timing_flows.sort(key=lambda x: x[1], reverse=True) visible_flows = min(height - (current_y - start_y) - 2, len(timing_flows)) for i in range(visible_flows): flow, cv = timing_flows[i] is_selected = (i == self.selected_flow) attr = curses.A_REVERSE if is_selected else curses.A_NORMAL flow_desc = f"{flow.src_ip}:{flow.src_port} → {flow.dst_ip}:{flow.dst_port}" if len(flow_desc) > 28: flow_desc = f"{flow.src_ip[:8]}…:{flow.src_port} → {flow.dst_ip[:8]}…:{flow.dst_port}" mean_ms = f"{flow.avg_inter_arrival*1000:.1f}ms" std_ms = f"{flow.std_inter_arrival*1000:.1f}ms" cv_str = f"{cv:.3f}" if flow.inter_arrival_times: range_ms = f"{(max(flow.inter_arrival_times) - min(flow.inter_arrival_times))*1000:.1f}ms" else: range_ms = "N/A" line = f"{flow_desc:30} {mean_ms:>10} {std_ms:>10} {cv_str:>8} {range_ms:>12}" stdscr.addstr(current_y + i, 4, line[:width-8], attr) def _rank_flows_by_performance(self, flows_list: List[FlowStats]) -> List[Tuple[FlowStats, float]]: """Rank flows by performance score (lower is better)""" ranked = [] for flow in flows_list: score = 0.0 # Outlier penalty (higher percentage = higher score) if flow.frame_count > 0: outlier_rate = len(flow.outlier_frames) / flow.frame_count score += outlier_rate * 100 # 0-100 points # Timing variability penalty if flow.avg_inter_arrival > 0: cv = flow.std_inter_arrival / flow.avg_inter_arrival score += cv * 50 # 0-50+ points # Enhanced decoder bonus (negative score) if flow.enhanced_analysis.decoder_type != "Standard": score -= 10 if flow.enhanced_analysis.avg_frame_quality > 80: score -= 5 # Good quality bonus ranked.append((flow, score)) ranked.sort(key=lambda x: x[1]) # Lower scores first (better performance) return ranked def _calculate_health_metrics(self, flows_list: List[FlowStats]) -> List[Tuple[str, str, str]]: """Calculate network health metrics""" metrics = [] # Overall outlier rate total_packets = sum(flow.frame_count for flow in flows_list) total_outliers = sum(len(flow.outlier_frames) for flow in flows_list) outlier_rate = (total_outliers / total_packets * 100) if total_packets > 0 else 0 outlier_status = "GOOD" if outlier_rate < 1.0 else "WARNING" if outlier_rate < 5.0 else "CRITICAL" metrics.append(("Network Outlier Rate", f"{outlier_rate:.2f}%", outlier_status)) # Enhanced decoder coverage enhanced_count = sum(1 for f in flows_list if f.enhanced_analysis.decoder_type != "Standard") coverage = (enhanced_count / len(flows_list) * 100) if flows_list else 0 coverage_status = "GOOD" if coverage > 50 else "WARNING" if coverage > 0 else "NONE" metrics.append(("Enhanced Coverage", f"{coverage:.1f}%", coverage_status)) # Timing consistency all_cvs = [] for flow in flows_list: if flow.avg_inter_arrival > 0: cv = flow.std_inter_arrival / flow.avg_inter_arrival all_cvs.append(cv) if all_cvs: avg_cv = statistics.mean(all_cvs) timing_status = "GOOD" if avg_cv < 0.1 else "WARNING" if avg_cv < 0.5 else "CRITICAL" metrics.append(("Timing Consistency", f"CV={avg_cv:.3f}", timing_status)) return metrics def _draw_selected_flow_outliers(self, stdscr, start_y: int, width: int, height: int, flow: FlowStats): """Draw outlier details for selected flow""" if height < 3: return stdscr.addstr(start_y, 4, f"OUTLIER DETAILS: {flow.src_ip}:{flow.src_port} → {flow.dst_ip}:{flow.dst_port}", curses.A_BOLD) current_y = start_y + 1 if flow.outlier_details: header = f"{'Frame#':>8} {'Inter-arrival':>15} {'Deviation':>12}" stdscr.addstr(current_y, 4, header, curses.A_UNDERLINE) current_y += 1 visible_outliers = min(height - 3, len(flow.outlier_details)) for i in range(visible_outliers): frame_num, timing = flow.outlier_details[i] # Calculate sigma deviation if flow.avg_inter_arrival > 0 and flow.std_inter_arrival > 0: sigma = abs(timing - flow.avg_inter_arrival) / flow.std_inter_arrival deviation = f"{sigma:.1f}σ" else: deviation = "N/A" outlier_line = f"{frame_num:>8} {timing*1000:>12.3f}ms {deviation:>12}" stdscr.addstr(current_y + i, 4, outlier_line) def _get_flows_list(self) -> List[FlowStats]: """Get flows sorted for statistical analysis""" flows_list = list(self.analyzer.flows.values()) # Sort by statistical interest: outliers first, then enhanced, then packet count flows_list.sort(key=lambda x: ( len(x.outlier_frames), x.enhanced_analysis.decoder_type != "Standard", x.frame_count ), reverse=True) return flows_list def handle_input(self, key: int, flows_list: List[FlowStats]) -> str: """Handle input for Statistical Analysis view""" if key == curses.KEY_UP: self.selected_flow = max(0, self.selected_flow - 1) return 'selection_change' elif key == curses.KEY_DOWN: max_flows = len(flows_list) - 1 self.selected_flow = min(max_flows, self.selected_flow + 1) return 'selection_change' elif key == curses.KEY_LEFT: self.analysis_mode = max(0, self.analysis_mode - 1) self.selected_flow = 0 # Reset selection when changing modes return 'mode_change' elif key == curses.KEY_RIGHT: self.analysis_mode = min(3, self.analysis_mode + 1) self.selected_flow = 0 # Reset selection when changing modes return 'mode_change' elif key >= ord('1') and key <= ord('4'): self.analysis_mode = key - ord('1') self.selected_flow = 0 return 'mode_change' elif key == ord('r') or key == ord('R'): return 'refresh_stats' elif key == ord('o') or key == ord('O'): self.analysis_mode = 1 # Switch to outlier analysis return 'show_outliers' return 'none'