Files
StreamLens/debug_frame_timing_isolation.py

130 lines
5.6 KiB
Python
Raw Normal View History

2025-07-30 23:48:32 -04:00
#!/usr/bin/env python3
"""Debug frame type timing isolation"""
import sys
sys.path.append('.')
from analyzer.analysis import EthernetAnalyzer
from analyzer.utils import PCAPLoader
def debug_frame_timing_isolation(pcap_file, src_ip="192.168.4.89"):
"""Debug timing calculations per frame type"""
# Create analyzer
analyzer = EthernetAnalyzer(outlier_threshold_sigma=3.0)
# Load PCAP
loader = PCAPLoader(pcap_file)
packets = loader.load_all()
print(f"Loaded {len(packets)} packets")
# Process packets
for i, packet in enumerate(packets, 1):
analyzer._process_single_packet(packet, i)
# Calculate statistics
analyzer.calculate_statistics()
# Find the specific flow
target_flow = None
for flow_key, flow in analyzer.flows.items():
if flow.src_ip == src_ip:
target_flow = flow
break
if not target_flow:
print(f"Flow from {src_ip} not found!")
return
print(f"\n=== FLOW: {target_flow.src_ip}:{target_flow.src_port} -> {target_flow.dst_ip}:{target_flow.dst_port} ===")
print(f"Total packets: {target_flow.frame_count}")
print(f"Flow-level outliers: {len(target_flow.outlier_frames)} {sorted(target_flow.outlier_frames)}")
print(f"Flow avg ΔT: {target_flow.avg_inter_arrival * 1000:.3f} ms")
print(f"Flow std σ: {target_flow.std_inter_arrival * 1000:.3f} ms")
print(f"\n=== FRAME TYPE TIMING ISOLATION ===")
# Show each frame type's timing in detail
for frame_type, stats in sorted(target_flow.frame_types.items(), key=lambda x: x[1].count, reverse=True):
print(f"\n--- {frame_type} ---")
print(f"Packets: {stats.count}")
print(f"Frame numbers: {stats.frame_numbers[:10]}{'...' if len(stats.frame_numbers) > 10 else ''}")
print(f"Inter-arrival times count: {len(stats.inter_arrival_times)}")
if len(stats.inter_arrival_times) >= 2:
print(f"Avg ΔT: {stats.avg_inter_arrival * 1000:.3f} ms")
print(f"Std σ: {stats.std_inter_arrival * 1000:.3f} ms")
print(f"3σ threshold: {(stats.avg_inter_arrival + 3 * stats.std_inter_arrival) * 1000:.3f} ms")
print(f"Outliers: {len(stats.outlier_frames)} {sorted(stats.outlier_frames)}")
# Show first 10 inter-arrival times for this frame type
print("First 10 inter-arrival times:")
for i, t in enumerate(stats.inter_arrival_times[:10]):
frame_num = stats.frame_numbers[i+1] if i+1 < len(stats.frame_numbers) else "?"
is_outlier = frame_num in stats.outlier_frames if isinstance(frame_num, int) else False
outlier_mark = " *OUTLIER*" if is_outlier else ""
print(f" Frame {frame_num}: {t * 1000:.3f} ms{outlier_mark}")
# Show timing around known problematic frames
problematic_frames = [1576, 1582, 1634, 1640]
for prob_frame in problematic_frames:
if prob_frame in stats.frame_numbers:
idx = stats.frame_numbers.index(prob_frame)
if idx > 0 and idx-1 < len(stats.inter_arrival_times):
inter_time = stats.inter_arrival_times[idx-1]
deviation = (inter_time - stats.avg_inter_arrival) / stats.std_inter_arrival if stats.std_inter_arrival > 0 else 0
print(f" >> Frame {prob_frame}: {inter_time * 1000:.3f} ms ({deviation:.1f}σ)")
else:
print("Not enough data for timing analysis")
print(f"\n=== CROSS-CONTAMINATION CHECK ===")
# Check if timing from one frame type is affecting another
# Look for cases where inter-arrival times might be calculated across frame types
print("Checking for inter-frame-type timing calculations...")
# Get all frame timestamps in order
all_frame_data = []
for frame_type, stats in target_flow.frame_types.items():
for i, (frame_num, timestamp) in enumerate(zip(stats.frame_numbers, stats.timestamps)):
all_frame_data.append((frame_num, timestamp, frame_type))
# Sort by frame number
all_frame_data.sort(key=lambda x: x[0])
print(f"\nFirst 20 frames in order:")
for i, (frame_num, timestamp, frame_type) in enumerate(all_frame_data[:20]):
if i > 0:
prev_timestamp = all_frame_data[i-1][1]
prev_frame_type = all_frame_data[i-1][2]
inter_time = timestamp - prev_timestamp
cross_type = frame_type != prev_frame_type
print(f" Frame {frame_num} ({frame_type}): ΔT={inter_time * 1000:.3f} ms {'[CROSS-TYPE]' if cross_type else ''}")
print(f"\n=== PROBLEMATIC FRAMES ANALYSIS ===")
# Check each problematic frame to see which frame type it belongs to
problematic_frames = [1576, 1582, 1634, 1640]
for prob_frame in problematic_frames:
frame_type_found = None
for frame_type, stats in target_flow.frame_types.items():
if prob_frame in stats.frame_numbers:
frame_type_found = frame_type
break
print(f"Frame {prob_frame}: belongs to {frame_type_found}")
# Check if this frame is an outlier in its frame type
if frame_type_found:
stats = target_flow.frame_types[frame_type_found]
is_outlier = prob_frame in stats.outlier_frames
print(f" -> Is outlier in {frame_type_found}: {is_outlier}")
if __name__ == "__main__":
if len(sys.argv) > 1:
debug_frame_timing_isolation(sys.argv[1])
else:
debug_frame_timing_isolation("1 PTPGM.pcapng")