Files
StreamLens/test_enhanced_outliers.py

102 lines
4.4 KiB
Python
Raw Permalink Normal View History

2025-07-30 23:48:32 -04:00
#!/usr/bin/env python3
"""Test script for enhanced outlier tracking"""
import sys
sys.path.append('.')
from analyzer.analysis import EthernetAnalyzer
from analyzer.utils import PCAPLoader
def test_enhanced_outlier_tracking(pcap_file="1 PTPGM.pcapng", src_ip="192.168.4.89"):
"""Test enhanced outlier tracking functionality"""
print("=== Testing Enhanced Outlier Tracking ===")
# Initialize analyzer
analyzer = EthernetAnalyzer(enable_realtime=False, outlier_threshold_sigma=3.0)
# Load and process packets
loader = PCAPLoader(pcap_file)
packets = loader.load_all()
print(f"Loaded {len(packets)} packets")
# Process packets
for i, packet in enumerate(packets, 1):
analyzer._process_single_packet(packet, i)
# Calculate statistics to populate outlier data
analyzer.calculate_statistics()
# Find the test flow
test_flow = None
for flow_key, flow in analyzer.flows.items():
if flow.src_ip == src_ip:
test_flow = flow
break
if not test_flow:
print(f"❌ No flow found from {src_ip}")
return
print(f"\n✅ Found flow: {test_flow.src_ip}:{test_flow.src_port}{test_flow.dst_ip}:{test_flow.dst_port}")
print(f" Total packets: {test_flow.frame_count}")
# Test frame type outlier tracking
print(f"\n=== Frame Type Analysis ===")
total_frame_type_outliers = 0
for frame_type, ft_stats in test_flow.frame_types.items():
outlier_count = len(ft_stats.outlier_frames)
total_frame_type_outliers += outlier_count
if outlier_count > 0:
print(f"\n{frame_type}: {outlier_count} outliers")
print(f" Avg ΔT: {ft_stats.avg_inter_arrival * 1000:.3f} ms")
print(f" Std σ: {ft_stats.std_inter_arrival * 1000:.3f} ms")
print(f" Threshold: {(ft_stats.avg_inter_arrival + 3 * ft_stats.std_inter_arrival) * 1000:.3f} ms")
# Test enhanced outlier details
if hasattr(ft_stats, 'enhanced_outlier_details') and ft_stats.enhanced_outlier_details:
print(" ✅ Enhanced outlier details available:")
for i, (frame_num, prev_frame_num, delta_t) in enumerate(ft_stats.enhanced_outlier_details[:3]):
deviation = (delta_t - ft_stats.avg_inter_arrival) / ft_stats.std_inter_arrival if ft_stats.std_inter_arrival > 0 else 0
print(f" Frame {frame_num} (from {prev_frame_num}): {delta_t * 1000:.3f} ms ({deviation:.1f}σ)")
if len(ft_stats.enhanced_outlier_details) > 3:
print(f" ... and {len(ft_stats.enhanced_outlier_details) - 3} more")
elif ft_stats.outlier_details:
print(" ⚠️ Legacy outlier details only:")
for i, (frame_num, delta_t) in enumerate(ft_stats.outlier_details[:3]):
deviation = (delta_t - ft_stats.avg_inter_arrival) / ft_stats.std_inter_arrival if ft_stats.std_inter_arrival > 0 else 0
print(f" Frame {frame_num}: {delta_t * 1000:.3f} ms ({deviation:.1f}σ)")
if len(ft_stats.outlier_details) > 3:
print(f" ... and {len(ft_stats.outlier_details) - 3} more")
else:
print(" ❌ No outlier details found")
print(f"\n=== Summary ===")
print(f"Total frame-type outliers: {total_frame_type_outliers}")
# Check if CH10-Data specifically has outliers
ch10_data_stats = test_flow.frame_types.get('CH10-Data')
if ch10_data_stats:
ch10_outliers = len(ch10_data_stats.outlier_frames)
print(f"CH10-Data outliers: {ch10_outliers}")
if hasattr(ch10_data_stats, 'enhanced_outlier_details'):
enhanced_count = len(ch10_data_stats.enhanced_outlier_details)
print(f"CH10-Data enhanced details: {enhanced_count}")
if enhanced_count > 0:
print("✅ Enhanced outlier tracking is working correctly!")
else:
print("⚠️ Enhanced outlier tracking not populated")
else:
print("❌ Enhanced outlier details attribute missing")
else:
print("❌ No CH10-Data frame type found")
if __name__ == "__main__":
if len(sys.argv) > 1:
test_enhanced_outlier_tracking(sys.argv[1])
else:
test_enhanced_outlier_tracking()